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Chapter 3 
Fuzzy Membership Function Formulation and Parameterization 
 

The membership function of a fuzzy set is a generalization of the indicator function in classical 
sets. In fuzzy logic, it represents the degree of truth as an extension of valuation. Degrees of truth 
are often confused with probabilities, although they are conceptually distinct, because fuzzy truth 
represents membership in vaguely defined sets, not likelihood of some event or condition. 
Membership functions were introduced by Zadeh in the first paper on fuzzy sets (1965). 
 

 

 

Figure 3.1: Membership functions in Fuzzy vs. crisp sets 

Formal Definition of membership function 

Let us consider fuzzy set A, A = {(x, µA(x))| x Є X} where µA(x) is called the membership 
function for the fuzzy set A. X is referred to as the universe of discourse. The membership 
function associates each element x Є X with a value in the interval [0, 1].  

In fuzzy sets, each elements is mapped to [0,1] by membership function.  That is, μA : X €[0, 1], 
where [0,1] means real numbers between 0 and 1 (including 0,1). Consequently, fuzzy set is with 
‘vague boundary set’ comparing with crisp set. 

The  fuzzy set A can be alternatively denoted as follows: 

If X is discrete then   A = Σ μA(xi) / xi 
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If  X is continuous then A = ʃ μA(x) / x 

  

Here, μA (x) is the “membership function”. Value of this function is between 0 and 1. This value 
represents the “degree of membership” (membership value) of element x in set A. The members 
of a fuzzy set are members to some degree, known as a membership grade or degree of 
membership. The membership grade is the degree of belonging to the fuzzy set. The larger the 
number (in [0, 1]) the more the degree of belonging. (N.B. This is not a probability).The 
translation from x to µA(x) is known as fuzzification. 

In the fuzzy theory, fuzzy set A of universe X is defined by function µA(x) called the 
membership function of set A. We already discussed this point. 

 

 µA(x): X → [0, 1], where µA(x) = 1 if x is totally in A; 

     µA(x) = 0 if x is not in A; 

     0 < µA(x) < 1 if x is partly in A. 

 

This set allows a continuum of possible choices.  For any element x of universe X, membership 
function µA(x) equals the degree to which x is an element of set A.  This degree, a value between 
0 and 1, represents the degree of membership, also called membership value, of element x in set 
A. 

Basics on Fuzzy Membership Functions 

Support: The support of fuzzy set A is the set of all point x  X such that A(x) > 0 
     Mathematically we can express Support (A) = {(x,A(x))/ A(x)>0)} 
 
Core:     The core of a fuzzy set A is the set of all xX such that A(x) = 1. 
                 Mathematically we can express core (A) = {x  X | A(x) = 1} 
 
Crossover: A crossover point of a fuzzy set ‘A’ is a point x  X at which A(x) = 0.5 
                 Mathematically we can express Crossover (A) = {x  X | A(x) = 0.5} 
 
Normality: A fuzzy set ‘A’ is a normal if its core is non-empty, i.e. core (A)    A is a normal fuzzy 
set. 
     Mathematically we can express Normality (A) =1 if A(x) =1, for all xX and (x, A(x))  A 
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Fuzzy singleton:  A fuzzy set ‘A’ whose support is single point in x with A(x) =1 is called fuzzy 
singleton. 
 |A|=| {(x, A(x))| A(x) =1}| 
 
 - cut: A = {x  X | A(x)   } 
 
Strong  - cut: A = {x  X | A(x) >}.   In this case ‘A’ is defined as Crisp set. 
 
Convexity of Fuzzy Sets: A fuzzy set A is convex if and only if for any x1, x2 X and there exists x = 
[0, 1] such that     
 
 
Alternatively, A is convex if all its -cuts are convex. 
 
Bandwidths: for a normal & convex set, the bandwidth is the distance between two unique crossover 
points Bandwidth (A) = |x2 – x1| where A(x1) = A(x2) = 0.5. 
 
Symmetry: A fuzzy set A is symmetric if it’s MF around a certain point x = c, satisfies the following 
criteria i.e. A(x + c) = A(c – x)    x  X. 
 
 
Open left, Open Right and Closed: 
A fuzzy set ‘A’ is open left  0)(lim and 1)(lim A 

x-x



xx AA   

A fuzzy set ‘A’ is open right   1)(lim and 0)(lim A 
x-x




xx AA   

A fuzzy set ‘A’ is closed  0)(lim)(lim A 
x-x




xx AA   

 

 

Figure 3.2: Illustration of terminologies on Fuzzy Membership function 

Membership	functions:	Parameterization	and	Formulation		
 
1) Triangular   Membership function 

))(),(min())1(( 2121 xxxx AAA  
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2) Trapezoidal MF 
3) Gaussian MF 
4) Generalized bell MF 
5) Sigmoid membership function 
 

 
Figure 3.3: Various type  of Fuzzy membership functions 

 

Triangular Membership function: 

Let a, b and c represent the x coordinates of the three vertices of μA (x) in a fuzzy set A (a: lower 

boundary and c: upper boundary where membership degree is zero, b: the centre where membership 
degree is 1). 
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Trapezoidal membership function: 
 

Let a, b, c and d represents the x coordinates of the membership function. then 

Trapezoid(x; a, b, c, d) = 0 if x  a; 

                               = (x-a)/ (b-a) if a  x  b 

                                     = 1 if b  x  c;                                                   1.0 

                                     = (d-x)/ (d-c) 0 if c   x  d;                        )(xA   

                               = 0, if d  x. 

          a         b              c      d 
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Gaussian membership function: 
   
The Gaussian membership function is usually represented as Gaussian(x:c,s) where c, s represents the 
mean and standard deviation. 
 
     
 
Here c represents centre, s represents width and m represents fuzzification factor. 
 

 
 

 

Figure 3.4: Different shapes of Gaussian MFs with different values of s and m. 
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Generalized Bell membership function:  
A generalized bell membership function has three parameters: a –responsible for its width, c –
responsible for its center and b –responsible for its slopes. Mathematically,  
 
 
 
 
 

 
 

 
 
 

 
Figure 3.5: Different shapes of Gaussian MFs with different values of s and m. 

 

Sigmoid Membership function: 
A sigmoidal membership function has two parameters: a responsible for its slope at the crossover 
point x = c.  The membership function of the sigmoid function can be represented as Sigmf (x:a, c) and it 
is  
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Figure 3.6: A general structures of sigmoid MF. 
 

A sigmoidal MF is inherently open right or left & thus, it is appropriate for representing concepts 
such as “very large” or “very negative”. Sigmoidal MF mostly used as activation function of 
artificial neural networks (NN).A NN should synthesize a close MF in order to simulate the 
behavior of a fuzzy inference system. 

Left –Right (LR)  MF 

 

 

 

Example: 

,  

 

 

 

Figure 3.7: Examples of L-R MFs 
 

 

F x xL ( ) m a x ( , ) 0 1 2 F x xR ( ) e x p ( )  3

c=65 

a=60 

c=25 

a=10 

















 







 


cx

cx
F

cx
xc

F

cxLR

R

L

,

,

),,;(







 
©Debasis Samanta, Indian Institute of Technology Kharagpur 

 

8

2-D membership function 
In this case, there are two inputs assigned to an MF: this MF is a two dimensional MF. A one 
input MF is called ordinary MF. 
 
Extension of a one-dimensional MF to a two-dimensional MF via cylindrical extensions is 
shown in below fig. If A is a fuzzy set in X, then its cylindrical extension in X*Y is a fuzzy set 
C(A) defined by: C(A) can be viewed as a two-dimensional fuzzy set. 
 
 

 

 

Base set                                                                                          Cylindrical extension 

Figure 3.8: Example of a 2D MF 
 

Projection of fuzzy sets (decrease dimension):   Let R be a two-dimensional fuzzy set on X*Y. 
Then the projections of R onto X and Y are defined as: 

 

 

 

Figure 3.9: Different views of 2D MFs 
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Composite anf non-composite MFs 

Suppose that the fuzzy A = “(x,y) is near (3,4)” is defined by: 

 

 

 

 

This two-dimensional MF is composite, the fuzzy set A is composed of two statements: 

                                         “x is near 3” and “y is near 4” 

These two statements are respectively defined as:  near 3 (x) = G(x;3,2) &  near 4 (x) = G(y;4,1) 

If a fuzzy set is defined by: 

                                                                      ,it is non-composite.  

A composite two-dimensional MF is usually the result of two statements joined by the AND or 
OR connectives. 

Composite two-dimensional MFs based on min & max operations 

Let  trap(x) = trapezoid (x;-6,-2,2,6) ,trap(y) = trapezoid (y;-6,-2,2,6) be two trapezoidal MFs on 
X and Y respectively.  By applying the min and max operators, we obtain two-dimensional MFs 
on X*Y. 

 

Figure 3.9: Two dimensional MFs defined by the min and max operators 
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